Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1225047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822938

RESUMEN

Introduction: Trauma patients are susceptible to coagulopathy and dysfunctional immune responses. Mesenchymal stromal cells (MSCs) are at the forefront of the cellular therapy revolution with profound immunomodulatory, regenerative, and therapeutic potential. Routine assays to assess immunomodulation activity examine MSC effects on proliferation of peripheral blood mononuclear cells (PBMCs) and take 3-7 days. Assays that could be done in a shorter period of time would be beneficial to allow more rapid comparison of different MSC donors. The studies presented here focused on assays for MSC suppression of mitogen-stimulated PBMC activation in time frames of 24 h or less. Methods: Three potential assays were examined-assays of apoptosis focusing on caspase activation, assays of phosphatidyl serine externalization (PS+) on PBMCs, and measurement of tumor necrosis factor alpha (TNFα) levels using rapid ELISA methods. All assays used the same initial experimental conditions: cryopreserved PBMCs from 8 to 10 pooled donors, co-culture with and without MSCs in 96-well plates, and PBMC stimulation with mitogen for 2-72 h. Results: Suppression of caspase activity in activated PBMCs by incubation with MSCs was not robust and was only significant at times after 24 h. Monitoring PS+ of live CD3+ or live CD4+/CD3+ mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, 2 h, although no increase in the percentage of PS+ cells was seen with time. The ability of MSC in co-culture to suppress PBMC PS+ externalization compared favorably to two concomitant assays for MSC co-culture suppression of PBMC proliferation, at 72 h by ATP assay, or at 96 h by fluorescently labeled protein signal dilution. TNFα release by mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, with accumulating signal over time. However, suppression levels with MSC co-culture was reliably seen only after 24 h. Discussion: Takeaways from these studies are as follows: (1) while early measures of PBMC activation is evident at 2-6 h, immunosuppression was only reliably detected at 24 h; (2) PS externalization at 24 h is a surrogate assay for MSC immunomodulation; and (3) rapid ELISA assay detection of TNFα release by PBMCs is a robust and sensitive assay for MSC immunomodulation at 24 h.


Asunto(s)
Células Madre Mesenquimatosas , Linfocitos T , Humanos , Leucocitos Mononucleares , Factor de Necrosis Tumoral alfa/farmacología , Mitógenos/farmacología , Terapia de Inmunosupresión/métodos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Caspasas
2.
Transfusion ; 63(7): 1366-1375, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293980

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) and other therapeutic cells show efficacy for cardiac damage, neurological disease, chronic lung disease, pediatric graft versus host disease, and several inflammatory conditions. Based on their anti-inflammatory and immune-modulatory activities, responsiveness, and secretion of beneficial factors, cellular therapeutics may provide benefits in acute and chronic traumatic injury. However, the use of live cells presents logistical challenges, especially for military trauma. MSCs are generally shipped and stored frozen but require sterile handling before infusion. This requires skilled personnel and equipment not readily available in a forward medical treatment facility or even a small community hospital. METHODS: Commercial human bone marrow- and adipose-derived MSCs from multiple donors were cultured under standard conditions, harvested and stored at 4°C in solution for up to 21 days. Cell viability, ATP content, apoptosis, proliferation capability, immunomodulation activity, and responsiveness were assessed after different amounts of time. RESULTS: Human MSCs can be stored at 4°C in MSC culture medium for 14 days while maintaining a reasonable level of viability and function. Both viability and function are reduced when MSCs are stored in crystalloid solutions. CONCLUSIONS: This approach makes it feasible to prepare cellular therapeutic agents in a laboratory or commercial facility and ship them under refrigerated conditions. Once they reach their destination, they can be stored at 4°C under conditions similar to blood products. Cells prepared and stored this way could also be used directly with minimal handling, making them more practical for both civilian and military trauma.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Niño , Células Cultivadas , Inmunomodulación , Congelación , Medios de Cultivo , Proliferación Celular
3.
Transfusion ; 63 Suppl 3: S199-S207, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37029665

RESUMEN

BACKGROUND: The risk of military and civilian radiation exposure is increasing, and determining the effects of exposure is a high priority. Irradiation of the nearby blood supply after a nuclear event may impede mobilization of blood products for resuscitation at a time of great need. RBCs are administered to patients with trauma and hemorrhage to transport and deliver oxygen and avoid tissue hypoxia. Here we determine the effects of ionizing radiation on the energy metabolome of RBCs isolated from cold stored whole blood to determine if their stability is compromised by radiation exposure. STUDY DESIGN AND METHODS: Whole blood from healthy volunteers was subjected to 0, 25, or 75 Gy of X-irradiation, and stored at 4°C. RBCs were isolated from stored WB at 0, 1, 7, 14, and 21 days of storage. The levels of extracted Krebs cycle intermediates, nicotinamide adenine dinucleotides, and phosphorylated derivatives of adenosine and guanosine were determined by tandem mass spectroscopy. RESULTS: Irradiation at either 25Gy or 75Gy had no significant effect on any parameter measured compared to control (0Gy). However, there was a significant change over time in storage for ATP, GDP, and guanosine. DISCUSSION: Irradiation at doses up to 75Gy had no effect on the energy metabolome of RBCs prepared from blood stored at 4°C for up to 21 days, suggesting that the RBC energy metabolome is not affected by radiation exposure and the blood can still be used for resuscitation in trauma patients.


Asunto(s)
Eritrocitos , Hemorragia , Humanos , Eritrocitos/metabolismo , Hemorragia/metabolismo , Guanosina/metabolismo , Conservación de la Sangre/métodos
4.
Transfusion ; 63 Suppl 3: S138-S145, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36971034

RESUMEN

BACKGROUND: Exposure to radiation through battlefield use of nuclear weapons, terrorist attacks or accidents at nuclear power plants is a current concern for the military. Beyond the risk of exposure to personnel is the intentional or accidental irradiation of our blood banking supply system. It is unknown how large doses of ionizing radiation affect storage of blood and blood products, including platelets. The major function of platelets is clot formation which includes aggregation, shape change, vesicle release, and fibrinogen attachment; these tasks require a significant amount of energy. Here, we determine whether the ionizing radiation effects the energy metabolome of platelets in storage. STUDY DESIGN AND METHODS: Fresh whole blood from healthy volunteers was subjected to 0, 25, or 75Gy of X-irradiation, and stored at 4°C. Platelets were isolated from stored WB at 0, 1, 7, 14, and 21 days of storage. Krebs cycle intermediates, nicotinamide adenine dinucleotides, and the tri-, di, and mono- phosphorylated versions of adenosine and guanosine were extracted and measured by tandem mass spectroscopy. RESULTS: Irradiation at either 25Gy or 75Gy had no significant effect on the amount of any metabolite measured compared to control (0Gy). However, there was a significant fall over time in storage for most of the metabolites measured. DISCUSSION: These data show that irradiation at high doses has no effect on the concentration of the energy metabolome of platelets derived from whole blood stored in 4°C for up to 21 days and suggests that platelets can maintain their metabolome even after radiation exposure.


Asunto(s)
Conservación de la Sangre , Exposición a la Radiación , Humanos , Conservación de la Sangre/métodos , Plaquetas/metabolismo , Adenosina/farmacología , Metaboloma
5.
J Trauma Acute Care Surg ; 94(1): 162-168, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35857032

RESUMEN

BACKGROUND: Whole blood (WB) transfusion is routinely used to resuscitate severely injured military trauma patients. Blood can be stored refrigerated while still maintaining reasonable function but is susceptible to environmental influences, including radiation exposure. Immune-compromised patients are transfused with irradiated blood to inactivate donor lymphocyte function (25 Gy per Association for the Advancement of Blood and Biotherapies [AARB] standard 5.7.3.2). However, there is limited information on function of WB exposed to high radiation doses. OBJECTIVE: This study aimed to determine if stored irradiated WB still retains function. This will be important if the stored blood supply is exposed to radiation in a combat situation or mass casualty incident when the need for blood will be high. METHODS: Whole blood collected from healthy donors was irradiated at 0, 25, or 75 Gy and stored at 4°C. Blood cell count, blood gas chemistry, thromboelastometry, platelet aggregation, and reactive oxygen species were measured before irradiation and at 1, 7, and 14 days of storage. Irradiated WB was compared with nonirradiated WB controls. RESULTS: Irradiated WB stored for up to 14 days was not significantly different than nonirradiated WB in most of the parameters measured. Stored blood showed expected changes associated with functional decline at longer storage times, but irradiation did not hasten the decline. There was a significant change in potassium and sodium ion concentrations after irradiation, but the functional relevance is not clear. CONCLUSION: High-dose irradiation had little effect on stored WB. Although there were changes in plasma sodium and potassium levels, there was little to no effect on hemostasis and blood cell viability. This suggests that stored blood subjected to a radiation event generating at least a dose of 75 Gy is still suitable for transfusion, which could be particularly important in the event of a mass casualty event where a large amount of blood is needed.


Asunto(s)
Hemostáticos , Exposición a la Radiación , Humanos , Conservación de la Sangre , Hemostasis , Plaquetas/fisiología
6.
PLoS One ; 17(12): e0279694, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584001

RESUMEN

A perfluorocarbon (PFC) investigated for treatment of traumatic brain injury (TBI) delivers oxygen to support brain function, but causes transient thrombocytopenia. TBI can cause acute inflammation with resulting thrombocytopenia; an interaction between the PFC effects and TBI inflammation might exacerbate thrombocytopenia. Therefore, PFC effects on platelet (PLT) function and hemostasis in a lipopolysaccharide (LPS) model of inflammation in the baboon were studied. Animals were randomized to receive saline ±LPS, and ± one of two doses of PFC. PLT count, transmission electron microscopy, and microparticle populations were quantified at baseline (BL) and at 2, 24, 48, 72, and 96 hours; hemostatic parameters for aggregometry and for blood clotting were measured at baseline (BL) and days 3 and 4. Injection of vehicle and LPS caused thrombocytopenia within hours; PFCs caused delayed thrombocytopenia beginning 48 hours post-infusion. LPS+PFC produced a more prolonged PLT decline and decreased clot strength. LPS+PFC increased ADP-stimulated aggregation, but PFC alone did not. Microparticle abundance was greatest in the LPS+PFC groups. LPS+PFC caused diffuse microvascular hemorrhage and death in 2 of 5 baboons in the low dose LPS-PFC group and 2 of 2 in the high dose LPS-PFC group. Necropsy and histology suggested death was caused by shock associated with hemorrhage in multiple organs. Abnormal morphology of platelets and red blood cells were notable for PFC inclusions. In summary, PFC infusion caused clinically significant thrombocytopenia and exacerbated LPS-induced platelet activation. The interaction between these effects resulted in decreased hemostatic capacity, diffuse bleeding, shock and death.


Asunto(s)
Fluorocarburos , Inflamación , Animales , Modelos Animales de Enfermedad , Eritrocitos/efectos de los fármacos , Eritrocitos/patología , Fluorocarburos/envenenamiento , Hemorragia/inducido químicamente , Hemostáticos , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Trombocitopenia/inducido químicamente
7.
J Immunol Methods ; 492: 113000, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33609532

RESUMEN

BACKGROUND: Immunomodulation by mesenchymal stromal cells (MSCs) is a potentially important therapeutic modality. MSCs suppress peripheral blood mononuclear cell (PBMC) proliferation in vitro, suggesting a mechanism for suppressing inflammatory responses in vivo. This study details the interactions of PBMCs and MSCs. METHODS: Pooled human PBMCs and MSCs were co-cultured at different MSC:PBMC ratios and harvested from 0 to 120 h, with and without phytohaemagglutin A (PHA) stimulation. Proliferation of adherent MSCs and non-adherent PBMCs was assessed by quantitation of ATP levels. PBMC surface marker expression was analyzed by flow cytometry. Indoleamine 2,3-dioxygenase (IDO) activity was determined by kynurenine assay and IDO mRNA by RT-PCR. Cytokine release was measured by ELISA. Immunofluorescent microscopy detected MSC, PBMC, monocyte (CD14+) and apoptotic events. RESULTS: PBMC proliferation in response to PHA gave a robust ATP signal by 72 h, which was suppressed by co-culture with densely plated MSCs. Very low level MSC seeding densities relative to PBMC number reproducibly stimulated PBMC proliferation. The CD4+/CD3+ population significantly decreased over time while the CD8+/CD3+ population significantly increased. No change in CD4+/CD8+ ratio is seen with high density MSC co-culture; very low density MSCs augment the changes seen in PHA stimulated PBMCs alone. IDO activity in MSCs co-cultured with PBMCs correlated with PBMC suppression. MSCs increased the secretion of IL-10 and IL-6 from stimulated co-cultures and decreased TNF-α secretion. In stimulated co-culture, low density MSCs decreased in number; fluorescence immunomicroscopy detected association of PBMC with MSC and phosphatidyl serine externalization in both cell populations. CONCLUSIONS: A bidirectional interaction between MSCs and PBMCs occurs during co-culture. High numbers of MSCs inhibit PHA-stimulated PBMC proliferation and the PBMC response to stimulation; low numbers of MSCs augment these responses. Low density MSCs are susceptible to attrition, apparently by PBMC-induced apoptosis. These results may have direct application when considering therapeutic dosing of patients; low MSC doses may have unintended detrimental consequences.


Asunto(s)
Comunicación Celular/inmunología , Leucocitos Mononucleares/inmunología , Células Madre Mesenquimatosas/inmunología , Cultivo Primario de Células/métodos , Proliferación Celular/efectos de los fármacos , Trasplante de Células , Técnicas de Cocultivo/métodos , Humanos , Leucocitos Mononucleares/trasplante , Mitógenos/farmacología , Fitohemaglutininas/farmacología
8.
Stem Cell Rev Rep ; 17(4): 1194-1214, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420590

RESUMEN

Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Heridas y Lesiones/terapia , Humanos
9.
J Immunol Methods ; 488: 112915, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33212091

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) have been proposed for treatment of acute respiratory distress syndrome (ARDS), graft versus host disease (GVHD), wound healing and trauma. A consensus is building that immunomodulation by MSCs is important for therapeutic potential. MSCs suppress peripheral blood mononuclear cell (PBMC) proliferation in vitro, potentially reflecting an ability to suppress PBMC inflammatory responses in vivo. Current mixed lymphocyte reaction (MLR) assays commonly used to evaluate MSC potency generally rely on either direct co-culture or indirect culture using transwell systems for monitoring the proliferation of isolated PBMCs in the presence of mitotically inactive MSCs. Proliferation of PBMCs is monitored by several methods, including incorporation of radiolabeled nucleotides, BRDU labeling and ELISA assay or flow cytometry of carboxyfluorescein labeled PBMCs. Here we present a streamlined assay using MSCs in a direct co-culture system with unmodified MSCs using a luminescent ATP assay to evaluate both PBMC and MSC proliferation/survival. METHODS: PBMCs were isolated from fresh anti-coagulated whole blood by centrifugation over Ficoll-Paque in LeucoSep tubes. Isolated PBMCs from 8 to 10 donors were pooled and cryopreserved at 1 × 107/ml in 50% RPMI medium,10% DMSO, 40% human AB serum. MSCs derived from bone marrow, adipose tissue or umbilical cord (BM-MSC, Ad-MSC, UC-MSC, respectively) were serially diluted starting at 50-60,000 cells/well and cultured in 96 well plates for 4-48 h in their respective medium. On Day 0, MSCs were washed, resuspended in PBMC media (RPMI with 10% FBS, 2 mM Glutamine, 10 mM HEPES, pH 7.4) and incubated with or without 150,000 freshly thawed pooled PBMCs/well, in the presence or absence of phytohemagglutinin A (PHA, 0-5 µg/ml). Proliferation of both MSCs (adherent) and PBMCs (non-adherent) was assessed by quantitation of ATP levels using the bioluminescent reagent Cell Titer-Glo (Promega). Culture supernatant contained PBMC, while washed adherent cells were primarily MSCs. Both cell types were incubated for 30 min with an equal volume of Cell Titer-Glo reagent and then assayed in white plates on a luminescence plate reader. RESULTS: PBMC proliferation in response to PHA stimulation resulted in a robust increase in ATP by 72 h, with >6 fold increase over unstimulated PBMCs, which showed no increase. MSC proliferation was decreased <20% at the highest PHA concentrations. Co-culture with MSCs suppressed PBMC proliferation dependent upon MSC passage number, source, and prior growth conditions. Total time to complete the ATP assay was under an hour including incubations. With minimal manipulations in the assay, intra- and inter- assay variations averaged 11.1 and 15.7% respectively. CONCLUSIONS: Direct co-culture of live unmodified MSCs with freshly thawed pooled PBMCs gives a robust determination of immunosuppression by MSCs with unparalleled ease. Graded responses can be determined, allowing comparison of potency between MSC preparations as in comparisons between freshly thawed and cultured MSCs as well as interferon-γ licensed MSCs. With the 96 well plate assay, far fewer PBMCs are generally required than in a typical flow cytometry determination. This streamlined assay can be performed within 72 h, without irradiating cells and without specialized equipment.


Asunto(s)
Comunicación Celular , Proliferación Celular , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Prueba de Cultivo Mixto de Linfocitos , Células Madre Mesenquimatosas/inmunología , Adenosina Trifosfato/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Mitógenos/farmacología , Fenotipo , Fitohemaglutininas/farmacología , Reproducibilidad de los Resultados , Factores de Tiempo , Flujo de Trabajo
10.
J Trauma Acute Care Surg ; 89(2S Suppl 2): S109-S117, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32744836

RESUMEN

BACKGROUND: There is broad interest in the use of cell therapies and cell products for treatment of a variety of diseases and problems. Of interest to the military, cellular therapies have the potential to confer tremendous benefit for treatment of both acute and chronic injuries. Although many different cell therapy products are currently under investigation, mesenchymal stromal cells (MSCs) are good candidates, based on their ability to respond to inflammation, limit vascular permeability, and modulate immune responses to injury. Although a large number of clinical trials utilize MSCs or their products, there is no firm consensus defining the characteristics and activities of a good MSC product. Here, we test multiple human MSCs in several assays designed to test potency, to determine if functionally relevant differences between MSCs can be defined using in vitro assays, allowing identification of superior MSC products for preclinical or clinical testing. METHODS: Human MSCs derived from several tissue sources (adipose, bone marrow, umbilical cord) were evaluated for their ability to respond to inflammatory signaling by upregulating indoleamine-2,3-dioxygenase and TSG6, suppress lymphocyte proliferation, alter the polarization of macrophages, and affect tube formation by endothelial cells. RESULTS: All MSCs tested displayed activity in the functional assays utilized, but differences in potency were observed in each assay. CONCLUSION: The indoleamine-2,3-dioxygenase enzyme activity assay represents a simple way to screen multiple samples. The mixed lymphocyte reaction and monocyte assays used to test interactions between MSCs and immune cells are more involved but give direct information on immunomodulation potential. The endothelial cell tube formation assay is relatively simple to perform but a large number of images must be generated and analyzed. However, it tests a functional activity other than immunomodulation and, therefore, adds another facet to MSC evaluation.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inmunomodulación , Medicina Militar
11.
PLoS One ; 15(6): e0234844, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32579572

RESUMEN

BACKGROUND: To study central hypovolemia in humans, lower body negative pressure (LBNP) is a recognized alternative to blood removal (HEM). While LBNP mimics the cardiovascular responses of HEM in baboons, similarities in hemostatic responses to LBNP and HEM remain unknown in this species. METHODS: Thirteen anesthetized baboons were exposed to progressive hypovolemia by HEM and, four weeks later, by LBNP. Hemostatic activity was evaluated by plasma markers, thromboelastography (TEG), flow cytometry, and platelet aggregometry at baseline (BL), during and after hypovolemia. RESULTS: BL values were indistinguishable for most parameters although platelet count, maximal clot strength (MA), protein C, thrombin anti-thrombin complex (TAT), thrombin activatable fibrinolysis inhibitor (TAFI) activity significantly differed between HEM and LBNP. Central hypovolemia induced by either method activated coagulation; TEG R-time decreased and MA increased during and after hypovolemia compared to BL. Platelets displayed activation by flow cytometry; platelet count and functional aggregometry were unchanged. TAFI activity and protein, Factors V and VIII, vWF, Proteins C and S all demonstrated hemodilution during HEM and hemoconcentration during LBNP, whereas tissue plasminogen activator (tPA), plasmin/anti-plasmin complex, and plasminogen activator inhibitor-1 did not. Fibrinolysis (TEG LY30) was unchanged by either method; however, at BL, fibrinolysis varied greatly. Post-hoc analysis separated baboons into low-lysis (LY30 <2%) or high-lysis (LY30 >2%) whose fibrinolytic state matched at both HEM and LBNP BL. In high-lysis, BL tPA and LY30 correlated strongly (r = 0.95; P<0.001), but this was absent in low-lysis. In low-lysis, BL TAFI activity and tPA correlated (r = 0.88; P<0.050), but this was absent in high-lysis. CONCLUSIONS: Central hypovolemia induced by either LBNP or HEM resulted in activation of coagulation; thus, LBNP is an adjunct to study hemorrhage-induced pro-coagulation in baboons. Furthermore, this study revealed a subset of baboons with baseline hyperfibrinolysis, which was strongly coupled to tPA and uncoupled from TAFI activity.


Asunto(s)
Fibrinólisis , Hemorragia/complicaciones , Hemostasis , Hipovolemia/tratamiento farmacológico , Hipovolemia/fisiopatología , Presión Negativa de la Región Corporal Inferior/efectos adversos , Animales , Masculino , Papio
12.
Transfusion ; 60 Suppl 3: S124-S133, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32478864

RESUMEN

BACKGROUND: This study evaluated blood components processed by the platelet rich plasma (PRP) method from fresh whole blood (FWB) treated with a pathogen reduction technology (PRT). The effects of storage temperature on PRT treated platelet concentrates (PCs) were also examined. STUDY DESIGN AND METHODS: PRT was performed using riboflavin and ultraviolet light on FWB in citrate phosphate dextrose anticoagulant. Following PRT, red blood cells (RBCs), PCs, and plasma for fresh frozen plasma (FFP), were isolated by sequential centrifugation. RBCs were stored at 4°C, FFP at -80°C, and PC at 22°C or at 4°C. Components were assayed throughout their storage times for blood gases, chemistry and CBC, hemostatic function as well as platelet (PLT) and RBC integrity. RESULTS: Component processing following PRT resulted in a significant drop in platelet recovery. Most PRT-PC bags fell below AABB guidelines for platelet count. PRT-PC also showed a decrease in clot strength and decreased aggregometry response. Platelet caspases were activated by PRT. Storage at 4°C improved platelet function. In PRT-FFP, prothrombin time and partial thromboplastin time (PT and aPTT) were prolonged; factors V, VII, VIII, and XI, protein C, and fibrinogen were significantly decreased. Free hemoglobin was elevated two-fold in PRT-RBC. CONCLUSION: Blood components isolated by the PRP method from PRT-treated WB result in a high percentage of PC that fail to meet AABB guidelines. FFP also shows diminished coagulation capacity. However, PRT-RBC are comparable to control-RBC. PRT-WB retains acceptable hemostatic function but alternatives to the PRP method of component separation may be more suitable.


Asunto(s)
Eritrocitos/metabolismo , Plasma/metabolismo , Plasma Rico en Plaquetas/metabolismo , Anticoagulantes/farmacología , Factores de Coagulación Sanguínea/metabolismo , Análisis de los Gases de la Sangre , Conservación de la Sangre , Eritrocitos/efectos de los fármacos , Eritrocitos/efectos de la radiación , Hemoglobinas/análisis , Humanos , Tiempo de Tromboplastina Parcial , Recuento de Plaquetas , Pruebas de Función Plaquetaria , Plasma Rico en Plaquetas/efectos de los fármacos , Plasma Rico en Plaquetas/efectos de la radiación , Tiempo de Protrombina , Riboflavina/farmacología , Rayos Ultravioleta
13.
J Trauma Acute Care Surg ; 89(2S Suppl 2): S100-S108, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32176171

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cell (MSC)-derived extracellular vesicles (EVs) are a possible cell-free alternative to MSCs because they retain the regenerative potential of MSCs, while still mitigating some of their limitations (such as the possible elicitation of host immune responses). The promotion and restoration of angiogenesis, however, is an important component in treating trauma-related injuries, and has not been fully explored with EVs. Herein, we describe the effects of monolayer adipose-derived EVs, spheroid adipose-derived EVs (SAd-EVs), monolayer bone marrow-derived EVs (MBM-EVs), and spheroid bone marrow-derived EVs (SBM-EVs) on human umbilical vein endothelial cell (HUVEC) tube formation and mitochondrial respiration. METHODS: The successful isolation of EVs derived from adipose MSCs or bone marrow MSCs in monolayer or spheroid cultures was confirmed by NanoSight (particle size distribution) and Western blot (surface marker expression). The EV angiogenic potential was measured using a 24-hour HUVEC tube formation assay. The EV effects on HUVEC mitochondrial function were evaluated using the Seahorse respirometer machine. RESULTS: The number of junctions, branches, and the average length of branches formed at 24 hours of tube formation were significantly affected by cell and culture type; overall adipose-derived EVs outperformed bone marrow-derived EVs, and spheroid-derived EVs outperformed monolayer-derived EVs. Additionally, adipose-derived EVs resulted in significantly increased HUVEC mitochondrial maximal respiration and adenosine triphosphate (ATP) production, while only MBM-EVs negatively impacted HUVEC proton leak. CONCLUSION: Adipose-derived EVs promoted HUVEC tube formation significantly more than bone marrow-derived EVs, while also maximizing HUVEC mitochondria function. Results demonstrate that, as with MSC therapies, it is possible to tailor EV culture and production to optimize therapeutic potential. LEVEL OF EVIDENCE: Basic or Foundational Research.


Asunto(s)
Técnicas de Cultivo de Célula , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Células de la Médula Ósea/metabolismo , Sistema Libre de Células , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Mitocondrias/metabolismo
14.
Transfusion ; 59(6): 2084-2092, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30977914

RESUMEN

BACKGROUND: Ordinarily, whole blood (WB) is separated into components before storage. We assessed the posttransfusion viability and function of platelets (PLTs) if they were stored within WB at 4°C. STUDY DESIGN AND METHODS: Whole blood was obtained from 30 normal subjects and stored at 4°C without agitation for 12 days and for 10, 15, or 22 days with agitation. After WB storage, a PLT concentrate was prepared, and a fresh PLT sample was obtained from each donor. The stored PLTs were labeled with 111 In and the fresh with 51 Cr, and both were simultaneously transfused into their donor. Blood samples were obtained after transfusion to determine PLT recoveries and survivals. PLT samples from WB before and after storage were also assayed for PLT function and biochemistry. RESULTS: After storage for 12 days without WB rotation, poststorage PLT counts averaged only 49 ± 12% of baseline values. After storage for 10, 15, or 22 days with end-over-end WB rotation, PLT counts averaged 76 ± 14% of baseline values. Fifteen-day poststorage radiolabeled PLT recoveries averaged 27 ± 11% (49 ± 16% of fresh), and survivals averaged 1.2 ± 0.4 days (16 ± 6% of fresh). in vitro assays demonstrated marked PLT activation after any storage time, and although PLT function decreased over time, stored PLTs were still considered acceptable. CONCLUSION: These data suggest that, during rotated WB storage at 4°C for up to 15 days, PLT yields, poststorage PLT recoveries and survivals, and PLT function should be sufficient to support the short-term hemostatic needs of traumatized patients.


Asunto(s)
Plaquetas/citología , Plaquetas/fisiología , Conservación de la Sangre/métodos , Hemostasis/fisiología , Transfusión de Plaquetas/métodos , Plaquetoferesis , Refrigeración , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Supervivencia Celular , Frío , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plaquetoferesis/métodos , Refrigeración/métodos , Adulto Joven
15.
Transfusion ; 59(S2): 1593-1600, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30980752

RESUMEN

BACKGROUND: Cellular therapeutic agents may benefit trauma patients by modulating the immune response to injury, and by reducing inflammation and vascular leakage. Administration of allogeneic mesenchymal stromal cells (MSCs) shows some benefit in preclinical and clinical trials, but less testing has been performed with other cell types. Human primary fibroblasts (FBs) were compared to MSCs in assays designed to evaluate MSCs to determine if these assays actually evaluate properties unique to MSCs or whether related cell types perform similarly. STUDY DESIGN AND METHODS: MSC-related surface marker expression, tissue factor, and human leukocyte antigen-D related were evaluated by flow cytometry, and in vitro adipogenic and osteogenic differentiation potential were determined. Procoagulant activity was determined by thromboelastography. Two potency assays correlated with immunomodulation potential were utilized: the mixed lymphocyte reaction and indoleamine 2,3-dioxygenase enzyme activity assays. RESULTS: Human primary FBs performed similarly to MSCs in assays designed to evaluate MSC characteristics and potency. Although similar for MSC-positive cell surface marker expression, FBs did not show robust adipose differentiation and expressed some level of markers not expected on MSCs. CONCLUSIONS: Human primary FBs are very similar to human MSCs, at least in assays currently used to evaluate MSC potency. Preclinical and clinical testing are required to determine if FBs show similar activity to MSCs in vivo. If FBs show inferior activity in vivo, development of new MSC-specific potency assays will be necessary to evaluate properties relevant to their unique clinical benefits.


Asunto(s)
Diferenciación Celular , Fibroblastos/metabolismo , Inmunomodulación , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Técnicas de Cultivo de Célula , Línea Celular , Fibroblastos/citología , Fibroblastos/inmunología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología
16.
Mol Carcinog ; 58(3): 309-320, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30365185

RESUMEN

Hepatocellular carcinoma (HCC) remains a deadly cancer, underscoring the need for relevant preclinical models. Male C3HeB/FeJ mice model spontaneous HCC with some hepatocarcinogenesis susceptibility loci corresponding to syntenic regions of human chromosomes altered in HCC. We tested other properties of C3HeB/FeJ tumors for similarity to human HCC. C3HeB/FeJ tumors were grossly visible at 4 months of age, with prevalence and size increasing until about 11 months of age. Histologic features shared with human HCC include hepatosteatosis, tumor progression from dysplasia to poorly differentiated, vascular invasion, and trabecular, oncocytic, vacuolar, and clear cell variants. More tumor cells displayed cytoplasmic APE1 staining versus normal liver. Ultrasound effectively detected and monitored tumors, with 85.7% sensitivity. Over 5000 genes were differentially expressed based on the GSE62232 and GSE63898 human HCC datasets. Of these, 158 and 198 genes, respectively, were also differentially expressed in C3HeB/FeJ. Common cancer pathways, cell cycle, p53 signaling and other molecular aspects, were shared between human and mouse differentially expressed genes. We established eigengenes that distinguish HCC from normal liver in the C3HeB/FeJ model and a subset of human HCC. These features extend the relevance and improve the utility of the C3HeB/FeJ line for HCC studies.


Asunto(s)
Carcinoma Hepatocelular/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Neoplasias Hepáticas/patología , Animales , Apoptosis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferación Celular , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C3H , Células Tumorales Cultivadas
17.
Stem Cells Int ; 2017: 7108458, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29138638

RESUMEN

Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs) for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS), which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL) is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP) or from adipose associated with debrided burned skin (BH). Most (95-99%) cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p < 0.05). Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes.

18.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S164-S169, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28628602

RESUMEN

BACKGROUND: Allogeneic mesenchymal stem cells (MSCs) show great potential for the treatment of military and civilian trauma based on their reduced immunogenicity and ability to modulate inflammation and immune function in the recipient. Although generally considered to be safe, MSCs express tissue factor (TF), a potent activator of coagulation. In the current study, we evaluated multiple MSC populations for tissue factor expression and procoagulant activity to characterize safety considerations for systemic use of MSCs in trauma patients who may have altered coagulation homeostasis. METHODS: Multiple MSC populations derived from either human adipose tissue or bone marrow were expanded in the recommended stem cell media. Stem cell identity was confirmed using a well-characterized panel of positive and negative markers. Tissue factor expression on the cell surface was evaluated by flow cytometry with anti-CD142 antibody. Effects on blood coagulation were determined by thromboelastography and calibrated automated thrombogram assays using platelet-poor plasma or whole blood. RESULTS: Mesenchymal stem cells express tissue factor on their surfaces and are procoagulant in the presence of blood or plasma. The adipose-derived MSCs (Ad-MSC) evaluated were more procoagulant and expressed more tissue factor than bone marrow MSCs (BM-MSCs), which showed a greater variability in TF expression. Bone marrow MSCs were identified that exhibited low procoagulant activity, whereas all Ad-MSCs examined exhibited high procoagulant activity. The percentage of cells in a given population expressing surface tissue factor correlates roughly with functional procoagulant activity. Mesenchymal stem cell tissue factor expression and procoagulant activity change over time in culture. CONCLUSIONS: All MSC populations are not equivalent; care should be taken to select cells for clinical use that minimize potential safety problems and maximize chance of patient benefit. Adipose-derived MSCs seem more consistently procoagulant than BM-MSCs, presenting a potential safety concern for systemic administration in coagulopathic patients. Donor variation exists between different cell populations, and culture handling conditions may also determine coagulation activity. Cells must be routinely monitored during preparation to ensure that they retain the desired characteristics before patient administration.


Asunto(s)
Coagulación Sanguínea/fisiología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Tromboplastina/metabolismo , Tejido Adiposo/citología , Médula Ósea/metabolismo , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Humanos , Tromboelastografía
19.
J Trauma Acute Care Surg ; 83(1 Suppl 1): S59-S65, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28452873

RESUMEN

BACKGROUND: Smoke inhalation and burn injury remain a major source of morbidity and mortality. There is known dysregulation of hemostasis in burn patients, but either hypercoagulation or hypocoagulation states are reported. Sheep are an established animal model for studying burn pathology and provide robust data on hemostatic function at baseline and after injury. METHODS: After an IACUC-approved protocol, 15 sheep were anesthetized and subjected to a 40% full thickness burn with smoke inhalation. Blood was sampled at baseline, 1 day postinjury (early effects) and days 2, 3, and 4 (late effects) after injury. Assays at each timepoint assessed: hemostatic function by thromboelastography (TEG), platelet counts and function by flow cytometry and aggregometry, coagulation protein levels, and free hemoglobin. Data were analyzed by the Wilcoxon paired test (nonparametric) with significance set at less than 0.05. RESULTS: By 24 hours postinjury, platelet counts had dropped, whereas the percent activated platelets increased. Absolute platelet functional response to the agonist adenosine diphosphate (ADP) decreased, whereas response to collagen showed no significant difference. On a per platelet basis, ADP response was unchanged, whereas the collagen response was elevated. Prothrombin time and activated partial thromboplastin time were prolonged. TEG parameters decreased significantly from baseline. Fibrinogen and factor V were trending up; coagulation proteins ATIII, factors IX and X were decreased.Late effects were followed in six animals. At day 4, platelet counts remained depressed compared with baseline with a nadir at day 2; responses to agonist on a per platelet basis remained the same for ADP and stayed elevated for collagen. Platelets continued to have elevated activation levels. Fibrinogen and factor V remained significantly elevated, whereas TEG parameters and prothrombin time, factors IX and X returned to near baseline levels. CONCLUSION: Coagulation parameters and hemostasis are dysregulated in sheep after smoke inhalation and burn. By 24 hours, sheep were hypocoagulable and subsequently became hypercoagulable by day 4. These results suggest a three-stage coagulopathy in burn injuries with a known early consumptive hypercoagulable state which is followed by a relatively hypocoagulable state with increased bleeding risk and then a return to a relatively unknown hypercoagulability with increased susceptibility to thrombotic disorders.


Asunto(s)
Pruebas de Coagulación Sanguínea , Plaquetas/fisiología , Quemaduras/sangre , Lesión por Inhalación de Humo/sangre , Animales , Quemaduras/terapia , Técnicas de Apoyo para la Decisión , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Hemostasis , Agregación Plaquetaria , Recuento de Plaquetas , Resucitación/métodos , Ovinos , Lesión por Inhalación de Humo/terapia , Tromboelastografía
20.
J Trauma Acute Care Surg ; 82(6S Suppl 1): S33-S40, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28333829

RESUMEN

Acute traumatic coagulopathy (ATC) is the failure of coagulation homeostasis that can rapidly arise following traumatic injury, hemorrhage, and shock; it is associated with higher injury severity, coagulation abnormalities, and increased blood transfusions. Acute traumatic coagulopathy has historically been defined by a prolonged prothrombin time, although newer, more informative measurements of hemostatic function have been used to improve diagnosis and support clinical decision making. The underlying biochemical mechanisms of and best practice therapeutics for ATC remain under active investigation because of its significant correlation to poor outcomes. The wide range of hypothesized mechanisms for ATC results from the large number of symptoms, phenotypes, and altered states in these patients as observed by multiple research groups. Much like the ancient fable of blind men describing an elephant from their limited perspectives, the limited nature of clinical and laboratory tools used to diagnose coagulopathy or evaluate hemostatic function has made finding causation difficult. The prolonged prothrombin time, degree of fibrinolysis, depletion of coagulation factors and inhibitors, and general failure of the blood have all been identified as being primary indicators for ATC. Therapeutic interventions including recombinant coagulation factors, antifibrinolytics, and blood products have been used with varying degrees of success as they are used to address specific symptoms. To truly understand the causes of ATC, research efforts must recognize the complexity of the hemostatic system and get to the heart of the matter by answering the question: "Is ATC a pathological condition that develops from the observed deficiencies in coagulation, fibrinolysis, and autoregulation, or is ATC an adaptive response generated as the body attempts to restore perfusion and avoid massive organ failure?" Because patient management must proceed without definitive answers regarding the entire causative chain, the current therapeutic focus should be on using what knowledge has been gained to the patient's advantage: control hemorrhage, maintain appropriate homeostatic balances of coagulation proteins, and restore oxygen perfusion.


Asunto(s)
Trastornos de la Coagulación Sanguínea/etiología , Heridas y Lesiones/complicaciones , Investigación Biomédica , Trastornos de la Coagulación Sanguínea/sangre , Plaquetas/fisiología , Fibrinógeno/fisiología , Fibrinólisis/fisiología , Hemostasis/fisiología , Humanos , Proteína C/fisiología , Heridas y Lesiones/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...